## FEATURES

12-bit, 80 MSPS output data rate per channel
1.8 V analog supply operation (AVDD)
1.8 V to 3.3 V output supply (DRVDD)

Integrated noise shaping requantizer (NSR)
Integrated quadrature error correction (QEC)
Performance with NSR enabled
SNR = $\mathbf{8 1} \mathrm{dBFS}$ in 16 MHz band up to $\mathbf{3 0} \mathbf{~ M H z}$ at $\mathbf{8 0}$ MSPS
Performance with NSR disabled
SNR = $\mathbf{7 2} \mathbf{~ d B F S}$ up to $\mathbf{7 0} \mathbf{~ M H z}$ at $\mathbf{8 0} \mathbf{~ M S P S}$
SFDR = $\mathbf{9 0} \mathbf{~ d B c ~ u p ~ t o ~} \mathbf{7 0} \mathbf{~ M H z}$ input at $\mathbf{8 0}$ MSPS
Low power: $\mathbf{9 8} \mathbf{m W}$ per channel at $\mathbf{8 0}$ MSPS
Differential input with 700 MHz bandwidth
On-chip voltage reference and sample-and-hold circuit
2 V p-p differential analog input
Serial port control options
Offset binary, gray code, or twos complement data format
Optional clock duty cycle stabilizer
Integer 1-to-6 input clock divider
Data output multiplex option
Built-in selectable digital test pattern generation
Energy-saving power-down modes
Data clock out with programmable clock and data alignment

## APPLICATIONS

## Communications

Diversity radio systems
Multimode digital receivers
3G, W-CDMA, LTE, CDMA2000, TD-SCDMA, MC-GSM
I/Q demodulation systems
Smart antenna systems
Battery-powered instruments
General-purpose software radios


## PRODUCT HIGHLIGHTS

1. The AD6659 operates from a single 1.8 V analog power supply and features a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families.
2. SPI-selectable noise shaping requantizer (NSR) function that allows for improved SNR within a reduced bandwidth of up to 70 MHz at 80 MSPS .
3. SPI-selectable dc correction and quadrature error correction (QEC) that corrects for dc offset, gain, and phase mismatches between the two channels.
4. A standard serial port interface supports various product features and functions, such as data output formatting, internal clock divider, power-down, DCO/data timing, offset adjustments, and voltage reference modes.
5. The AD6659 is packaged in a 64 -lead RoHS-compliant LFCSP that is pin compatible with the AD9269 16-bit ADC, the AD9268 16-bit ADC, the AD9258 14-bit ADC, the AD9251 14-bit ADC, the AD9231 12-bit ADC, and the AD9204 10-bit ADC, enabling a simple migration path between 10 -bit and 16 -bit converters sampling from 20 MSPS to 125 MSPS.

## Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.

## AD6659

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
Functional Block Diagram .....  1
Product Highlights ..... 1
Revision History ..... 2
General Description ..... 3
Specifications ..... 4
DC Specifications ..... 4
AC Specifications ..... 5
Digital Specifications ..... 6
Switching Specifications ..... 7
Timing Specifications ..... 8
Absolute Maximum Ratings ..... 9
Thermal Characteristics ..... 9
ESD Caution ..... 9
Pin Configuration and Function Descriptions ..... 10
Typical Performance Characteristics ..... 12
Equivalent Circuits ..... 14
Theory of Operation ..... 16
ADC Architecture ..... 16
Analog Input Considerations ..... 16
Voltage Reference ..... 19
Clock Input Considerations ..... 20
Power Dissipation and Standby Mode ..... 21
REVISION HISTORY
2/10—Rev. 0 to Rev. A
Changes to Title ..... 1
Changes to Features Section ..... 1
Changes to General Description Section ..... 3
1/10—Revision 0: Initial Version
Digital Outputs ..... 22
Timing ..... 22
Built-In Self-Test and Output Test ..... 24
BIST ..... 24
Output Test Modes ..... 24
Channel/Chip Synchronization. ..... 25
Noise Shaping Requantizer (NSR) ..... 26
20\% BW NSR Mode ( 16 MHz BW at 80 MSPS) ..... 26
DC and Quadrature Error Correction (QEC) ..... 27
Serial Port Interface (SPI) ..... 29
Configuration Using the SPI ..... 29
Hardware Interface ..... 30
Configuration Without the SPI ..... 30
SPI Accessible Features ..... 30
Memory Map ..... 31
Reading the Memory Map Register Table ..... 31
Open Locations ..... 31
Default Values ..... 31
Memory Map Register Table ..... 32
Memory Map Register Descriptions. ..... 35
Applications Information ..... 37
Design Guidelines ..... 37
Outline Dimensions ..... 38
Ordering Guide ..... 38

## GENERAL DESCRIPTION

The AD6659 is a mixed-signal, dual-channel IF receiver supporting radio topologies requiring two receiver signal paths, such as in main/diversity or direct conversion. This communications systems processor consists of two high performance analog-todigital converters (ADCs) and noise shaping requantizer (NSR) digital blocks. It is designed to support various communications applications where high dynamic range performance and small size are desired.

The high dynamic range ADC core features a multistage differential pipelined architecture with integrated output error correction logic. Each ADC features a wide bandwidth switch capacitor sampling network within the first stage of the differential pipeline. An integrated voltage reference eases design considerations.
Each ADC output is connected internally to an NSR block. The integrated NSR circuitry allows for improved SNR performance in a smaller frequency band within the Nyquist region. The device supports two different output modes selectable via the serial port interface (SPI).

With the NSR feature enabled, the outputs of the ADCs are processed such that the AD6659 supports enhanced SNR performance within a limited region of the Nyquist bandwidth while maintaining a 12 -bit output resolution. The NSR block is programmed to provide a bandwidth of $20 \%$ of the sample clock. For example, with a sample clock rate of 80 MSPS, the AD6659 can achieve up to 81.5 dBFS SNR for a 16 MHz bandwidth at 9.7 MHz AIN.

With the NSR block disabled, the ADC data is provided directly to the output with an output resolution of 12 bits. The AD6659 can achieve up to 72 dBFS SNR for the entire Nyquist bandwidth when operated in this mode.

After digital processing, output data is routed into two 12-bit output ports that support 1.8 V or 3.3 V CMOS levels.
The AD6659 receiver digitizes a wide spectrum of IF frequencies. Each receiver is designed for simultaneous reception of the main and diversity channel. This IF sampling architecture greatly reduces component cost and complexity compared with traditional analog techniques or less integrated digital methods.

The AD6659 also incorporates an optional integrated dc offset correction and quadrature error correction (QEC) block that corrects for gain and phase mismatch between the two channels. This functional block proves invaluable in complex signal processing applications such as direct conversion receivers.
The ADC contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. The available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user-defined test patterns entered via the serial port interface (SPI).
A differential clock input controls all internal conversion cycles. An optional duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance.

The digital output data is presented in offset binary, gray code, or twos complement format. A data clock output (DCO) is provided for each ADC channel to ensure proper latch timing with receiving logic. Both 1.8 V and 3.3 V CMOS levels are supported, and output data can be multiplexed onto a single output bus.
The AD6659 is available in a 64-lead, RoHS-compliant LFCSP, and it is specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

## AD6659

## SPECIFICATIONS

## DC SPECIFICATIONS

AVDD $=1.8 \mathrm{~V}$; DRVDD $=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$, DCS disabled, unless otherwise noted.

Table 1.

| Parameter | Temp | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RESOLUTION | Full | 12 |  |  | Bits |
| ACCURACY <br> No Missing Codes <br> Offset Error <br> Gain Error ${ }^{1}$ <br> Differential Nonlinearity (DNL) ${ }^{2}$ <br> Integral Nonlinearity (INL) ${ }^{2}$ | Full <br> Full <br> Full <br> Full <br> $25^{\circ} \mathrm{C}$ <br> Full <br> $25^{\circ} \mathrm{C}$ |  | Guaranteed <br> $\pm 0.05$ <br> -1.9 <br> $\pm 0.13$ $\pm 0.17$ | $\begin{aligned} & \pm 0.5 \\ & \pm 0.30 \\ & \pm 0.40 \end{aligned}$ | $\begin{aligned} & \text { \% FSR } \\ & \text { \% FSR } \\ & \text { LSB } \end{aligned}$ |
| MATCHING CHARACTERISTICS <br> Offset Error <br> Gain Error ${ }^{1}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & \pm 0.0 \\ & 0.4 \end{aligned}$ | $\pm 0.65$ | $\begin{aligned} & \% \text { FSR } \\ & \% \text { FSR } \end{aligned}$ |
| TEMPERATURE DRIFT <br> Offset Error | Full |  | $\pm 2$ |  | ppm/ $/{ }^{\circ} \mathrm{C}$ |
| INTERNAL VOLTAGE REFERENCE <br> Output Voltage (1 V Mode) <br> Load Regulation Error at 1.0 mA | Full Full | 0.981 | $\begin{aligned} & 0.993 \\ & 2 \end{aligned}$ | 1.005 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$ |
| INPUT REFERRED NOISE VREF = 1.0 V | $25^{\circ} \mathrm{C}$ |  | 0.25 |  | LSB rms |
| ANALOG INPUT Input Span, VREF $=1.0 \mathrm{~V}$ Input Capacitance ${ }^{3}$ Input Common-Mode Voltage Input Common-Mode Range | Full <br> Full <br> Full <br> Full | 0.5 | $\begin{aligned} & 2 \\ & 6.5 \\ & 0.9 \end{aligned}$ | 1.3 | $\begin{aligned} & \text { Vp-p } \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| REFERENCE INPUT RESISTANCE | Full |  | 7.5 |  | k $\Omega$ |
| POWER SUPPLIES <br> Supply Voltage <br> AVDD <br> DRVDD <br> Supply Current <br> IAVDD ${ }^{2}$ <br> IDRVDD $^{2}(1.8 \mathrm{~V})$ <br> IDRVDD $^{2}(3.3 \mathrm{~V})$ | Full <br> Full <br> Full <br> Full <br> Full | $\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & 1.8 \\ & \\ & 113 \\ & 9.3 \\ & 18.5 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 3.6 \\ & 119 \end{aligned}$ | V V <br> mA <br> mA <br> mA |
| POWER CONSUMPTION <br> DC Input <br> Sine Wave Input ${ }^{2}($ DRVDD $=1.8 \mathrm{~V})$ <br> Sine Wave Input ${ }^{2}($ DRVDD $=3.3 \mathrm{~V})$ <br> Standby Power ${ }^{4}$ <br> Power-Down Power | Full <br> Full <br> Full <br> Full <br> Full |  | $\begin{aligned} & 196 \\ & 220 \\ & 264 \\ & 37 \\ & 1.0 \end{aligned}$ | 240 | mW <br> mW <br> mW <br> mW <br> mW |

[^0]
## AC SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$, DCS disabled, unless otherwise noted.
Table 2.

| Parameter ${ }^{1}$ | Temp | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SIGNAL-TO-NOISE RATIO (SNR)—NSR DISABLED $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$ | 71.4 | $\begin{aligned} & 72.4 \\ & 72.3 \\ & 72.0 \end{aligned}$ |  | dBFS <br> dBFS <br> dBFS <br> dBFS |
| $\begin{aligned} & \text { SIGNAL-TO-NOISE RATIO (SNR)—NSR ENABLED } \\ & \text { 20\% Bandwidth (16 MHz @ } 80 \mathrm{MSPS}) \\ & \mathrm{fi}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fin}_{\mathrm{IN}}=30.5 \mathrm{MHz} \\ & \mathrm{fin}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 81.5 \\ & 81.2 \\ & 80.3 \\ & \hline \end{aligned}$ |  | dBFS <br> dBFS <br> dBFS |
| SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) $\begin{aligned} & \mathrm{fiN}_{\mathrm{N}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{N}}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \hline \end{aligned}$ | $71.5$ | $\begin{aligned} & 72.4 \\ & 72.2 \\ & 71.9 \end{aligned}$ |  | dBFS <br> dBFS <br> dBFS <br> dBFS |
| EFFECTIVE NUMBER OF BITS (ENOB) $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 11.7 \\ & 11.7 \\ & 11.7 \end{aligned}$ |  | Bits <br> Bits <br> Bits |
| WORST SECOND OR THIRD HARMONIC $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$ |  | $\begin{aligned} & -93 \\ & -92 \\ & -90 \end{aligned}$ | $-80$ | dBc <br> dBc <br> dBc <br> dBc |
| SPURIOUS-FREE DYNAMIC RANGE (SFDR) $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$ | 80 | $\begin{aligned} & 93 \\ & 92 \\ & 90 \end{aligned}$ |  | dBc <br> dBc <br> dBC <br> dBc |
| WORST OTHER (HARMONIC OR SPUR) $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{I}}=30.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$ |  | $\begin{aligned} & -99 \\ & -99 \\ & -98 \end{aligned}$ | -91 | dBc <br> dBc <br> dBC <br> dBc |
| TWO-TONE SFDR $\mathrm{f}_{\mathrm{IN}}=28.3 \mathrm{MHz}(-7 \mathrm{dBFS}), 30.6 \mathrm{MHz}(-7 \mathrm{dBFS})$ | $25^{\circ} \mathrm{C}$ |  | 90 |  | dBc |
| CROSSTALK ${ }^{2}$ | Full |  | -110 |  | dBC |
| ANALOG INPUT BANDWIDTH | $25^{\circ} \mathrm{C}$ |  | 700 |  | MHz |

[^1]
## AD6659

## DIGITAL SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$,
DCS disabled, unless otherwise noted.
Table 3.

| Parameter | Temp | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIFFERENTIAL CLOCK INPUTS (CLK+, CLK-) <br> Logic Compliance <br> Internal Common-Mode Bias <br> Differential Input Voltage <br> Input Voltage Range <br> High Level Input Current <br> Low Level Input Current <br> Input Resistance <br> Input Capacitance | Full <br> Full <br> Full <br> Full <br> Full <br> Full <br> Full | $\begin{aligned} & 0.2 \\ & \text { GND }-0.3 \\ & -10 \\ & -10 \\ & 8 \end{aligned}$ | CMOS/LVDS/LVPECL $0.9$ <br> 10 <br> 4 | $\begin{aligned} & 3.6 \\ & \text { AVDD + } 0.2 \\ & +10 \\ & +10 \\ & 12 \end{aligned}$ | V <br> Vp-p <br> V <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> k $\Omega$ <br> pF |
| LOGIC INPUTS (SCLK/DFS, SYNC, PDWN) ${ }^{1}$ <br> High Level Input Voltage <br> Low Level Input Voltage <br> High Level Input Current <br> Low Level Input Current <br> Input Resistance <br> Input Capacitance | Full <br> Full <br> Full <br> Full <br> Full <br> Full | $\begin{aligned} & 1.2 \\ & 0 \\ & -50 \\ & -10 \end{aligned}$ | $\begin{aligned} & 30 \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { DRVDD + } 0.3 \\ & 0.8 \\ & -75 \\ & +10 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$ |
| LOGIC INPUTS (CSB) ${ }^{2}$ <br> High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Resistance Input Capacitance | Full <br> Full <br> Full <br> Full <br> Full <br> Full | $\begin{aligned} & 1.2 \\ & 0 \\ & -10 \\ & 40 \end{aligned}$ | $\begin{aligned} & 26 \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { DRVDD + } 0.3 \\ & 0.8 \\ & +10 \\ & 135 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \hline \end{aligned}$ |
| LOGIC INPUTS (SDIO¹/DCS²) <br> High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Resistance Input Capacitance | Full <br> Full <br> Full <br> Full <br> Full <br> Full | $\begin{aligned} & 1.2 \\ & 0 \\ & -10 \\ & 40 \end{aligned}$ | $\begin{aligned} & 26 \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { DRVDD + } 0.3 \\ & 0.8 \\ & +10 \\ & 130 \end{aligned}$ | V <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> k $\Omega$ <br> pF |
| DIGITAL OUTPUTS <br> DRVDD $=3.3 \mathrm{~V}$ <br> High Level Output Voltage, $\mathrm{I}_{\text {он }}=50 \mu \mathrm{~A}$ <br> High Level Output Voltage, Іон $=0.5 \mathrm{~mA}$ <br> Low Level Output Voltage, los $=1.6 \mathrm{~mA}$ <br> Low Level Output Voltage, IoL $=50 \mu \mathrm{~A}$ <br> DRVDD $=1.8 \mathrm{~V}$ <br> High Level Output Voltage, $\mathrm{I}_{\mathrm{oн}}=50 \mu \mathrm{~A}$ <br> High Level Output Voltage, Іон $=0.5 \mathrm{~mA}$ <br> Low Level Output Voltage, lol $=1.6 \mathrm{~mA}$ <br> Low Level Output Voltage, IoL $=50 \mu \mathrm{~A}$ | Full <br> Full | $\begin{aligned} & 3.29 \\ & 3.25 \\ & \\ & \hline 1.79 \\ & 1.75 \end{aligned}$ |  | $\begin{aligned} & 0.2 \\ & 0.05 \\ & \\ & \\ & 0.2 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |

[^2]
## AD6659

## SWITCHING SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$, DCS disabled, unless otherwise noted.

Table 4.

| Parameter | Temp | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLOCK INPUT PARAMETERS |  |  |  |  |  |
| Input Clock Rate | Full |  |  | 480 | MHz |
| Conversion Rate ${ }^{1}$ | Full | 3 |  | 80 | MSPS |
| CLK Period-Divide-by-1 Mode (tak) | Full | 12.5 |  |  | ns |
| CLK Pulse Width High (tch) | Full |  | 6.25 |  | ns |
| Aperture Delay ( $\mathrm{t}_{\mathrm{A}}$ ) | Full |  | 1.0 |  | ns |
| Aperture Uncertainty (Jitter, $\mathrm{t}_{\text {J }}$ ) | Full |  | 0.1 |  | ps rms |
| DATA OUTPUT PARAMETERS |  |  |  |  |  |
| Data Propagation Delay (tpo) | Full |  | 3 |  | ns |
| DCO Propagation Delay (toco) | Full |  | 3 |  | ns |
| DCO to Data Skew (tskew) | Full |  | 0.1 |  | ns |
| Pipeline Delay (Latency) | Full |  | 9 |  | Cycles |
| With NSR Enabled | Full |  | 10 |  | Cycles |
| With QEC Enabled | Full |  | 11 |  | Cycles |
| Wake-Up Time ${ }^{2}$ | Full |  | 350 |  | $\mu \mathrm{s}$ |
| Standby | Full |  | 260 |  | ns |
| OUT-OF-RANGE RECOVERY TIME | Full |  | 2 |  | Cycles |

${ }^{1}$ Conversion rate is the clock rate after the CLK divider.
${ }^{2}$ Wake-up time is dependent on the value of the decoupling capacitors.


Figure 2. CMOS Output Data Timing


Figure 3. CMOS Interleaved Output Timing

## TIMING SPECIFICATIONS

Table 5.

| Parameter | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYNC TIMING REQUIREMENTS <br> tssync <br> thsync | SYNC to rising edge of CLK setup time (see Figure 4) SYNC to rising edge of CLK hold time (see Figure 4) |  | $\begin{aligned} & 0.24 \\ & 0.40 \end{aligned}$ |  | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| SPI TIMING REQUIREMENTS |  |  |  |  |  |
| tos | Setup time between the data and the rising edge of SCLK (see Figure 50) | 2 |  |  | ns |
| $\mathrm{t}_{\text {H }}$ | Hold time between the data and the rising edge of SCLK (see Figure 50) | 2 |  |  | ns |
| tcık | Period of the SCLK (see Figure 50) | 40 |  |  | ns |
| ts | Setup time between CSB and SCLK (see Figure 50) | 2 |  |  | ns |
| $\mathrm{t}_{\mathrm{H}}$ | Hold time between CSB and SCLK (see Figure 50) | 2 |  |  | ns |
| $\mathrm{tHIGH}^{\text {l }}$ | SCLK pulse width high (see Figure 50) | 10 |  |  | ns |
| tow | SCLK pulse width low (see Figure 50) | 10 |  |  | ns |
| ten_solo | Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge | 10 |  |  | ns |
| tols_sDo | Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge | 10 |  |  | ns |

## Timing Diagram



Figure 4. SYNC Input Timing Requirements

## AD6659

## ABSOLUTE MAXIMUM RATINGS

Table 6.

| Parameter | Rating |
| :--- | :--- |
| AVDD to AGND | -0.3 V to +2.0 V |
| DRVDD to AGND | -0.3 V to +3.9 V |
| VIN+A, VIN+B, VIN-A, VIN-B to AGND | -0.3 V to AVDD +0.2 V |
| CLK+, CLK- to AGND | -0.3 V to AVDD +0.2 V |
| SYNC to AGND | -0.3 V to DRVDD +0.3 V |
| VREF to AGND | -0.3 V to AVDD +0.2 V |
| SENSE to AGND | -0.3 V to AVDD +0.2 V |
| VCM to AGND | -0.3 V to AVDD +0.2 V |
| RBIAS to AGND | -0.3 V to AVDD +0.2 V |
| CSB to AGND | -0.3 V to DRVDD +0.3 V |
| SCLK/DFS to AGND | -0.3 V to DRVDD +0.3 V |
| SDIO/DCS to AGND | -0.3 V to DRVDD +0.3 V |
| OEB to AGND | -0.3 V to DRVDD +0.3 V |
| PDWN to AGND | -0.3 V to DRVDD +0.3 V |
| D0x through D11x to AGND | -0.3 V to DRVDD +0.3 V |
| DCOx to AGND | -0.3 V to DRVDD +0.3 V |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| $\quad$ (Ambient) | $150^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| $\quad$ Under Bias |  |
| Storage Temperature Range | (Ambient) |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL CHARACTERISTICS

The exposed paddle is the only ground connection for the chip. The exposed paddle must be soldered to the AGND plane of the user's circuit board. Soldering the exposed paddle to the user's board also increases the reliability of the solder joints and maximizes the thermal capability of the package.

Typical $\theta_{\mathrm{JA}}$ is specified for a 4-layer PCB with a solid ground plane. As listed in Table 7, airflow improves heat dissipation, which reduces $\theta_{\mathrm{JA}}$. In addition, metal in direct contact with the package leads from metal traces, through holes, ground, and power planes, reduces the $\theta_{\mathrm{JA}}$.

Table 7. Thermal Resistance

|  | Airflow <br> Velocity <br> $(\mathbf{m} / \mathbf{s e c})$ | $\boldsymbol{\theta}_{\mathrm{JA}}{ }^{1,2}$ | $\boldsymbol{\theta}_{\mathrm{Jc}}{ }^{1,3}$ | $\boldsymbol{\theta}_{\mathrm{JB}}{ }^{1,4}$ |
| :---: | :--- | :--- | :--- | :--- |
| Package Type |  |  |  |  |
| 94 Lead LFCSP | 0 | $23^{\circ} \mathrm{C} / \mathrm{W}$ | $2.0^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| $(\mathrm{mm} \times 9 \mathrm{~mm}$ | 1.0 | $20^{\circ} \mathrm{C} / \mathrm{W}$ |  | $12^{\circ} \mathrm{C} / \mathrm{W}$ |

${ }^{1}$ Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.
${ }^{2}$ Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
${ }^{3}$ Per MIL-STD 883, Method 1012.1.
${ }^{4}$ Per JEDEC JESD51-8 (still air).

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



## notes

1. NC = No comnect.
2. THE EXPOSED PADDLE MUST BE SOLDERED TO THE PCB GROUND TO ENSURE PROPER HEAT DISSIPATION, NOISE, AND MECHANICAL STRENGTH BENEFITS.

Figure 5. Pin Configuration
Table 8. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 0, EP | AGND | Exposed paddle is the only ground connection for the chip. It must be connected to the printed circuit board (PCB) AGND. |
| 1,2 | CLK+, CLK- | Differential Encode Clock. PECL, LVDS, or 1.8V CMOS inputs. |
| 3 | SYNC | Digital Input. SYNC input to clock divider. $30 \mathrm{k} \Omega$ internal pull-down. |
| 4 to 7, 25 to 27, 29 | NC | Do Not Connect. |
| 8, 9, 11 to 18, 20, 21 | D0B to D11B | Channel B Digital Outputs. D11B is the MSB and D0B is the LSB. |
| 10, 19, 28, 37 | DRVDD | Digital Output Driver Supply (1.8V to 3.3 V ). |
| 22 | ORB | Channel B Out-of-Range Digital Output. |
| 23 | DCOB | Channel B Data Clock Digital Output. |
| 24 | DCOA | Channel A Data Clock Digital Output. |
| 30 to 36,38 to 42 | D0A to D11A | Channel A Digital Outputs. D11A is the MSB and D0A is the LSB. |
| 43 | ORA | Channel A Out-of-Range Digital Output. |
| 44 | SDIO/DCS | SPI Data Input/Output (SDIO). The SDIO function provides bidirectional SPI data I/O in SPI mode with a $30 \mathrm{k} \Omega$ internal pull-down in SPI mode. The duty cycle stabilizer (DCS pin function) is the static enable input for the duty cycle stabilizer in non-SPI mode with a $30 \mathrm{k} \Omega$ internal pull-up in non-SPI (DCS) mode. |
| 45 | SCLK/DFS | SPI Clock (SCLK) Input in SPI Mode/Data Format Select (DFS). $30 \mathrm{k} \Omega$ internal pull-down for both SCLK and DFS. The DFS function provides static control of data output format in non-SPI mode. When DFS is high, it equals twos complement output. When DFS is low, it equals offset binary output. |
| 46 | CSB | SPI Chip Select. Active low enable; $30 \mathrm{k} \Omega$ internal pull-up. |
| 47 | OEB | Digital Input. When OEB is low, it enables the Channel A and Channel B digital outputs; when OEB is high, the outputs are tristated. $30 \mathrm{k} \Omega$ internal pull-down. |
| 48 | PDWN | Digital Input. $30 \mathrm{k} \Omega$ internal pull-down. When PDWN is high, it powers down the device. When PDWN is low, the device runs in normal operation. |


| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| $49,50,53,54,59,60,63,64$ | AVDD | 1.8 V Analog Supply Pins. |
| 51,52 | VIN+A, VIN-A | Channel A Analog Inputs. |
| 55 | VREF | Voltage Reference Input/Output. |
| 56 | SENSE | Reference Mode Selection. |
| 57 | VCM | Analog output voltage at midsupply to set common mode of the analog inputs. |
| 58 | RBIAS | Sets Analog Current Bias. Connect to a $10 \mathrm{k} \Omega$ (1\% tolerance) resistor to ground. |
| 61,62 | VIN-B, VIN+B | Channel B Analog Inputs. |

## AD6659

## TYPICAL PERFORMANCE CHARACTERISTICS

AVDD $=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$,
DCS disabled, unless otherwise noted.


Figure 6. Single-Tone FFT with $f_{I N}=9.7 \mathrm{MHz}$


Figure 7. Single-Tone FFT with $f_{I N}=30.6 \mathrm{MHz}$


Figure 8. Single-Tone FFT with $f_{I N}=69 \mathrm{MHz}$


Figure 9. Single-Tone FFT with $f_{I N}=100.3 \mathrm{MHz}$


Figure 10. Two-Tone FFT with $f_{I N 1}=28.3 \mathrm{MHz}$ and $f_{I N 2}=30.6 \mathrm{MHz}$


Figure 11. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{I^{1} 1}=28.3 \mathrm{MHz}$ and $f_{\mathrm{N}^{2}}=30.6 \mathrm{MHz}$
$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}$, DCS disabled, unless otherwise noted.


Figure 12. SNR/SFDR vs. Input Frequency (AIN) with
2 Vp-p Full Scale


Figure 13. DNL Error with $f_{I N}=9.7 \mathrm{MHz}$


Figure 14. SNR/SFDR vs. Sample Rate with $\operatorname{AIN}=9.7 \mathrm{MHz}$


Figure 15. SNR/SFDR vs. Input Amplitude (AIN) with $f_{\mathrm{IN}}=9.7 \mathrm{MHz}$


Figure 16. INL Error with $f_{\text {iN }}=9.7 \mathrm{MHz}$

## AD6659

## EQUIVALENT CIRCUITS



Figure 17. Equivalent Analog Input Circuit


Figure 18. Equivalent Clock Input Circuit


Figure 19. Equivalent SDIO/DCS Input Circuit


Figure 20. Equivalent Digital Output Circuit


Figure 21. Equivalent SCLK/DFS, SYNC, OEB, and PDWN Input Circuit


Figure 22. Equivalent RBIAS and VCM Circuit


Figure 23. Equivalent CSB Input Circuit


Figure 24. Equivalent SENSE Circuit


## AD6659

## THEORY OF OPERATION

The AD6659 dual ADC design can be used for diversity reception of signals, where the ADCs are operating identically on the same carrier but from two separate antennae. The ADCs can be operated with independent analog inputs. The user can sample any $\mathrm{f}_{\mathrm{s}} / 2$ frequency segment from dc to 200 MHz , using appropriate low-pass or band-pass filtering at the ADC inputs with little loss in ADC performance. Operation to 300 MHz analog input is permitted but occurs at the expense of increased ADC noise and distortion.

In nondiversity applications, the AD6659 can be used as a baseband or direct downconversion receiver, where one ADC is used for I input data and the other ADC is used for Q input data.
Synchronization capability is provided to allow synchronized timing between multiple channels or multiple devices.
The AD6659 features a noise shaping requantizer (NSR) to allow higher than 12-bit SNR to be maintained in a subset of the Nyquist band.
The AD6659 also incorporates an optional integrated dc offset correction and quadrature error correction (QEC) block that can correct for dc offset, gain, and phase mismatch between the two channels. This functional block can be very beneficial to complex signal processing applications such as direct conversion receivers.

Programming and control of the AD6659 is accomplished using a 3-wire, SPI-compatible serial interface.

## ADC ARCHITECTURE

The AD6659 architecture consists of a multistage, pipelined ADC. Each stage provides sufficient overlap to correct for flash errors in the preceding stage. The quantized outputs from each stage are combined into a final 12 -bit result in the digital correction logic. Alternately, the 12 -bit result can be processed through the noise shaping requantizer (NSR) block before it is sent to the digital correction logic.

The pipelined architecture permits the first stage to operate with a new input sample while the remaining stages operate with preceding samples. Sampling occurs on the rising edge of the clock.

Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor DAC and an interstage residue amplifier (for example, a multiplying digital-to-analog converter (MDAC)). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.

Each ADC output is connected internally to an NSR block. The integrated NSR circuitry allows for improved SNR performance in a smaller frequency band within the Nyquist region. The device supports two different output modes selectable via the SPI. With the NSR feature enabled, the outputs of the ADCs are processed such that the AD6659 supports enhanced SNR performance within a limited region of the Nyquist bandwidth while maintaining a 12 -bit output resolution. With the NSR block disabled, the ADC data is provided directly to the output with an output resolution of 12 bits. The output staging block aligns the data, corrects errors, and passes the data to the CMOS output buffers. The output buffers are powered from a separate (DRVDD) supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.

## ANALOG INPUT CONSIDERATIONS

The analog input to the AD6659 is a differential switched capacitor circuit designed for processing differential input signals. This circuit can support a wide common-mode range while maintaining excellent performance. By using an input common-mode voltage of midsupply, users can minimize signal dependent errors and achieve optimum performance.


Figure 26. Switched Capacitor Input Circuit
The clock signal alternately switches the input circuit between sample and hold mode (see Figure 26). When the input circuit is switched to sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor in series with each input can help reduce the peak transient current injected from the output stage of the driving source. In addition, low Q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and, therefore, achieve the maximum bandwidth of the ADC. Such use of low Q inductors or ferrite beads is required when driving the converter front end at high IF frequencies. Either a shunt capacitor or two single-ended capacitors can be placed on the inputs to provide a matching passive network. This ultimately creates a low-pass filter at the input to limit unwanted broadband noise. See the

AN-742 Application Note, the AN-827 Application Note, and the Analog Dialogue article "Transformer-Coupled Front-End for Wideband A/D Converters" (Volume 39, April 2005) for more information. In general, the precise values depend on the application.

## Input Common Mode

The analog inputs of the AD6659 are not internally dc-biased. Therefore, in ac-coupled applications, the user must provide a dc bias externally. Setting the device so that VCM $=\mathrm{AVDD} / 2$ is recommended for optimum performance, but the device can function over a wider range with reasonable performance, as shown in Figure 27.
An on-board, common-mode voltage reference is included in the design and is available from the VCM pin. The VCM pin must be decoupled to ground by a $0.1 \mu \mathrm{~F}$ capacitor, as described in the Applications Information section.


Figure 27. SNR/SFDR vs. Input Common-Mode Voltage, $f_{I N}=30.5 \mathrm{MHz}, f_{S}=80 \mathrm{MSPS}$

## Differential Input Configurations

Optimum performance is achieved while driving the AD6659 in a differential input configuration. For baseband applications, the AD8138, ADA4937-2, and ADA4938-2 differential drivers provide excellent performance and a flexible interface to the ADC.
The output common-mode voltage of the ADA4938-2 is easily set with the VCM pin of the AD6659 (see Figure 28), and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal.


Figure 28. Differential Input Configuration Using the ADA4938
For baseband applications below $\sim 10 \mathrm{MHz}$ where SNR is a key parameter, differential transformer coupling is the recommended input configuration. An example is shown in Figure 29. To bias
the analog input, the VCM voltage can be connected to the center tap of the secondary winding of the transformer.


Figure 29. Differential Transformer-Coupled Configuration
The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few megahertz (MHz). Excessive signal power can also cause core saturation, which leads to distortion.
At input frequencies in the second Nyquist zone and above, the noise performance of most amplifiers is not adequate to achieve the true SNR performance of the AD6659. For applications above $\sim 10 \mathrm{MHz}$ where SNR is a key parameter, differential double balun coupling is the recommended input configuration (see Figure 31).
An alternative to using a transformer-coupled input at frequencies in the second Nyquist zone is to use the AD8352 differential driver. An example is shown in Figure 32. See the AD8352 data sheet for more information.
In any configuration, the value of Shunt Capacitor $C$ is dependent on the input frequency and source impedance and may need to be reduced or removed. Table 9 displays the suggested values to set the RC network. However, these values are dependent on the input signal and should be used only as a starting guide.

Table 9. Example RC Network

| Frequency Range (MHz) | R Series <br> $(\boldsymbol{\Omega}$ Each $)$ | C Differential (pF) |
| :--- | :--- | :--- |
| 0 to 70 | 33 | 22 |
| 70 to 200 | 125 | Open |

## Single-Ended Input Configuration

A single-ended input can provide adequate performance in cost-sensitive applications. In this configuration, SFDR and distortion performance degrade due to the large input commonmode swing. If the source impedances on each input are matched, there should be little effect on SNR performance. Figure 30 shows a typical single-ended input configuration.


Figure 30. Single-Ended Input Configuration


Figure 31. Differential Double Balun Input Configuration


Figure 32. Differential Input Configuration Using the AD8352

## VOLTAGE REFERENCE

A stable and accurate 1.0 V voltage reference is built into the AD6659. The VREF can be configured using either the internal 1.0 V reference or an externally applied 1.0 V reference voltage. The various reference modes are summarized in the sections that follow. The Reference Decoupling section describes best practices for PCB layout of the reference.

## Internal Reference Connection

A comparator within the AD6659 detects the potential at the SENSE pin and configures the reference in one of two possible modes, which are summarized in Table 10. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 33), setting $V_{\text {ref }}$ to 1.0 V .


Figure 33. Internal Reference Configuration
If the internal reference of the AD6659 is used to drive multiple converters to improve gain matching, the loading of the reference by the other converters must be considered. Figure 34 shows how the internal reference voltage is affected by loading.


Figure 34. VREF Accuracy vs. Load Current

## External Reference Operation

The use of an external reference may be necessary to enhance the gain accuracy of the ADC or improve thermal drift characteristics. Figure 35 shows the typical drift characteristics of the internal reference in 1.0 V mode.


Figure 35. Typical $V_{\text {REF }}$ Drift
When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent $7.5 \mathrm{k} \Omega$ load (see Figure 25). The internal buffer generates the positive and negative full-scale references for the ADC core. Therefore, the external reference must be limited to a maximum of 1.0 V .

Table 10. Reference Configuration Summary

| Selected Mode | SENSE Voltage (V) | Resulting V ReF $^{(V)}$ | Resulting Differential Span (V p-p) |
| :--- | :--- | :--- | :--- |
| Fixed Internal Reference | AGND to 0.2 | 1.0 internal | 2.0 |
| Fixed External Reference | AVDD | 1.0 applied to external VREF pin | 2.0 |

## AD6659

## CLOCK INPUT CONSIDERATIONS

For optimum performance, clock the AD6659 sample clock inputs, CLK+ and CLK-, with a differential signal. The signal is typically ac-coupled into the CLK+ and CLK- pins via a transformer or capacitors. These pins are biased internally (see Figure 36) and require no external bias.


Figure 36. Equivalent Clock Input Circuit

## Clock Input Options

The AD6659 has a very flexible clock input structure. The clock input can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of the type of signal being used, clock source jitter is of the most concern, as described in the Jitter Considerations section.

Figure 37 and Figure 38 show two preferred methods for clocking the AD6659 (at clock rates up to 480 MHz before the internal CLK divider). A low jitter clock source is converted from a single-ended signal to a differential signal using either an RF transformer or an RF balun.

The RF balun configuration is recommended for clock frequencies between 125 MHz and 480 MHz , and the RF transformer is recommended for clock frequencies from 10 MHz to 200 MHz . The back-to-back Schottky diodes across the transformer/balun secondary limit clock excursions into the AD6659 to approximately 0.8 V p-p differential.

This limit helps prevent the large voltage swings of the clock from feeding through to other portions of the AD6659 while preserving the fast rise and fall times of the signal that are critical to a low jitter performance.


Figure 37. Transformer-Coupled Differential Clock (Up to 200 MHz)


Figure 38. Balun-Coupled Differential Clock (Up to 480 MHz)
If a low jitter clock source is not available, another option is to ac couple a differential PECL signal to the sample clock input pins, as shown in Figure 39. The AD9510/AD9511/AD9512/ AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer excellent jitter performance.


Another option is to ac couple a differential LVDS signal to the sample clock input pins, as shown in Figure 40. The AD9510/ AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer excellent jitter performance.


Figure 40. Differential LVDS Sample Clock (Up to 480 MHz )
In some applications, it may be acceptable to drive the sample clock inputs with a single-ended 1.8 V CMOS signal. In such applications, drive the CLK+ pin directly from a CMOS gate and bypass the CLK- pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor (see Figure 41).


Figure 41. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz )

## Input Clock Divider

The AD6659 contains an input clock divider with the ability to divide the input clock by integer values from 1 to 6 . Optimum performance is obtained by enabling the internal DCS when using divide ratios other than 1,2 , or 4.
The AD6659 clock divider can be synchronized using the external SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the clock divider to be resynchronized on every SYNC signal or only on the first SYNC signal after the register is written. A valid SYNC causes the clock divider to reset to its initial state. This synchronization feature allows multiple parts to have their clock dividers aligned to guarantee simultaneous input sampling.

## Clock Duty Cycle

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to clock duty cycle. Commonly, a $\pm 5 \%$ tolerance is required on the clock duty cycle to maintain dynamic performance characteristics.

The AD6659 contains a DCS that retimes the nonsampling (falling) edge, providing an internal clock signal with a nominal $50 \%$ duty cycle. This allows the user to provide a wide range of clock input duty cycles without affecting the performance of the AD6659. Noise and distortion performance are nearly flat for a wide range of duty cycles with the DCS on, as shown in Figure 42.


Figure 42. SNR vs. DCS On/Off
Jitter in the rising edge of the input is still of concern and is not easily reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates less than 20 MHz nominal. The loop has a time constant associated with it that must be considered in applications in which the clock rate can change dynamically. A wait time of $1.5 \mu \mathrm{~s}$ to $5 \mu \mathrm{~s}$ is required after the dynamic clock frequency increases or decreases before the DCS loop is relocked to the input signal.

## Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR from the low frequency SNR ( $\mathrm{SNR}_{\mathrm{LF}}$ ) at a given input frequency ( $\mathrm{f}_{\mathrm{INPUT}}$ ) due to jitter ( $\mathrm{t}_{\text {RMS }}$ ) can be calculated by

$$
S N R_{H F}=-10 \log \left[\left(2 \pi \times f_{\text {INPUT }} \times t_{R R M S}\right)^{2}+10^{\left(-S N R_{L F} / 10\right)}\right]
$$

In the previous equation, the rms aperture jitter represents the clock input jitter specification. IF undersampling applications are particularly sensitive to jitter, as illustrated in Figure 43.


Figure 43. SNR vs. Input Frequency and Jitter
Treat the clock input as an analog signal in cases in which aperture jitter may affect the dynamic range of the AD6659. To avoid modulating the clock signal with digital noise, keep power supplies for clock drivers separate from the ADC output driver supplies. Low jitter, crystal controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be retimed by the original clock at the last step.
For more information, see the AN-501 Application Note and the AN-756 Application Note, available at www.analog.com.

## POWER DISSIPATION AND STANDBY MODE

As shown in Figure 44, the analog core power dissipated by the AD6659 is proportional to its sample rate. The digital power dissipation of the CMOS outputs is determined primarily by the strength of the digital drivers and the load on each output bit.
The maximum DRVDD current ( $\mathrm{I}_{\text {DRVDD }}$ ) can be calculated as

$$
I_{D R V D D}=V_{D R V D D} \times C_{L O A D} \times f_{C L K} \times N
$$

where $N$ is the number of output bits ( 26 bits, in the case of the AD6659).

This maximum current occurs when every output bit switches on every clock cycle, that is, a full-scale square wave at the Nyquist frequency of $f_{\text {CLK }} / 2$. In practice, the DRVDD current is established by the average number of output bits switching,

## AD6659

which is determined by the sample rate and the characteristics of the analog input signal.
Reducing the capacitive load presented to the output drivers can minimize digital power consumption. The data in Figure 44 was taken using the same operating conditions as those used for the Typical Performance Characteristics, with a 5 pF load on each output driver.


Figure 44. Analog Core Power vs. Clock Rate
The AD6659 is placed in power-down mode either by the SPI port or by asserting the PDWN pin high. In this state, the ADC typically dissipates 1.0 mW . During power-down, the output drivers are placed in a high impedance state. By asserting the PDWN pin low returns the AD6659 to its normal operating mode. Note that PDWN is referenced to the digital output driver supply (DRVDD) and should not exceed that supply voltage.
Low power dissipation in power-down mode is achieved by shutting down the reference, reference buffer, biasing networks, and clock. Internal capacitors are discharged when entering powerdown mode and must then be recharged when returning to normal operation. As a result, wake-up time is related to the time spent in power-down mode, and shorter power-down cycles result in proportionally shorter wake-up times.

When using the SPI port interface, the user can place the ADC in power-down mode or standby mode. Standby mode allows the user to keep the internal reference circuitry powered when faster wake-up times are required. See the Memory Map section for more details.

## DIGITAL OUTPUTS

The AD6659 output drivers can be configured to interface with 1.8 V to 3.3 V CMOS logic families. Output data can also be multiplexed onto a single output bus to reduce the total number of traces required.

The CMOS output drivers are sized to provide sufficient output current to drive a wide variety of logic families. However, large drive currents tend to cause current glitches on the supplies and may affect converter performance.

Applications that require the ADC to drive large capacitive loads or large fanouts may require external buffers or latches.
The output data format can be selected to be either offset binary or twos complement by setting the SCLK/DFS pin when operating in the external pin mode (see Table 11). Output codings for the respective data formats are shown in Table 12.
As detailed in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI, the data format can be selected for offset binary, twos complement, or gray code when using the SPI control.

Table 11. SCLK/DFS Mode Selection (External Pin Mode)

| Voltage at Pin | SCLK/DFS | SDIO/DCS |
| :--- | :--- | :--- |
| AGND | Offset binary (default) | DCS disabled (default) |
| DRVDD | Twos complement | DCS enabled |

## Digital Output Enable Function (OEB)

The AD6659 has a flexible three-state ability for the digital output pins. The three-state mode is enabled using the OEB pin or through the SPI interface. If the OEB pin is low, the output data drivers and DCOs are enabled. If the OEB pin is high, the output data drivers and DCOs are placed in a high impedance state. This OEB function is not intended for rapid access to the data bus. Note that OEB is referenced to the digital output driver supply (DRVDD) and should not exceed that supply voltage.

When using the SPI interface, the data outputs and DCO of each channel can be independently three-stated by using the output disable (OEB) bit (Bit 4) in Register 0x14.

## TIMING

The AD6659 provides latched data with a pipeline delay of nine clock cycles. Data outputs are available one propagation delay $\left(t_{\mathrm{pD}}\right)$ after the rising edge of the clock signal.

Minimize the length of the output data lines and loads placed on them to reduce transients within the AD6659. These transients can degrade converter dynamic performance.

The lowest typical conversion rate of the AD6659 is 3 MSPS. At clock rates below 3 MSPS, dynamic performance can degrade.

## Data Clock Output (DCOx)

The AD6659 provides two data clock output (DCOx) signals intended for capturing the data in an external register. The CMOS data outputs are valid on the rising edge of DCOx, unless the DCOx clock polarity was changed via the SPI. See Figure 2 and Figure 3 for graphical timing descriptions.

## AD6659

Table 12. Output Data Format

| Input (V) | Condition (V) | Offset Binary Output Mode | Twos Complement Mode | OR |
| :--- | :--- | :--- | :--- | :--- |
| VIN+ - VIN- | $<-V_{\text {REF }}-0.5$ LSB | 000000000000 | 100000000000 | 1 |
| VIN+ - VIN- | $=-V_{\text {REF }}$ | 000000000000 | 100000000000 | 0 |
| VIN+ - VIN- | $=0$ | 100000000000 | 000000000000 | 0 |
| VIN+ - VIN- | $=+V_{\text {REF }}-1.0$ LSB | 111111111111 | 011111111111 | 0 |
| VIN+ - VIN- | $>+V_{\text {REF }}-0.5$ LSB | 111111111111 | 011111111111 | 1 |

## BUILT-IN SELF-TEST AND OUTPUT TEST

The AD6659 includes a built-in self-test (BIST) feature designed to enable verification of the integrity of each channel as well as to facilitate board level debugging. A BIST feature that verifies the integrity of the digital datapath of the AD6659 is included. Various output test options are also provided to place predictable values on the outputs of the AD6659.

## BIST

The BIST is a thorough test of the digital portion of the selected AD6659 signal path. Perform the BIST test after a reset to ensure that the part is in a known state. During BIST, data from an internal pseudorandom noise (PN) source is driven through the digital datapath of both channels, starting at the ADC block output. At the datapath output, CRC logic calculates a signature from the data. The BIST sequence runs for 512 cycles and then stops. When completed, the BIST compares the signature results with a predetermined value. If the signatures match, the BIST sets Bit 0 of Register 0x24, signifying that the test passed. If the BIST test failed, Bit 0 of Register $0 \times 24$ is cleared. The outputs are connected during this test so that the PN sequence can be observed as it runs. Writing the value of $0 \times 05$ to Register $0 \times 0 \mathrm{E}$
runs the BIST. This enables Bit 0 (BIST enable) of Register 0x0E and resets the PN sequence generator, Bit 2 (BIST INIT) of Register 0 x 0 E . At the completion of the BIST, Bit 0 of Register 0x24 automatically clears. The PN sequence can be continued from its last value by writing a 0 in Bit 2 of Register $0 \times 0 \mathrm{E}$. However, if the PN sequence is not reset, the signature calculation does not equal the predetermined value at the end of the test. At that point, the user must rely on verifying the output data.

## OUTPUT TEST MODES

The output test options are described in Table 17 at Address 0x0D. When an output test mode is enabled, the analog section of the ADC is disconnected from the digital back end blocks and the test pattern is run through the output formatting block. Some of the test patterns are subject to output formatting, and some of the test patterns are not. The PN generators from the PN sequence tests can be reset by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be performed with or without an analog signal (if present, the analog signal is ignored), but they do require an encode clock. For more information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

## CHANNEL/CHIP SYNCHRONIZATION

The AD6659 has a SYNC input that offers the user flexible synchronization options for synchronizing sample clocks across multiple ADCs. The input clock divider can be enabled to synchronize on a single occurrence of the SYNC signal or on every occurrence. The SYNC input is internally synchronized to the
sample clock; however, to ensure that there is no timing uncertainty exists between multiple parts, the SYNC input signal should be externally synchronized to the input clock signal, meeting the setup and hold times shown in Table 5. Drive the SYNC input using a single-ended CMOS-type signal.

## NOISE SHAPING REQUANTIZER

The AD6659 features a noise shaping requantizer (NSR) to allow higher than 12-bit SNR to be maintained in a subset of the Nyquist band. Enabling and disabling the NSR mode is controlled via Bit 0 in the 0x11E SPI register. In NSR mode, the band of interest can be tuned using a low-pass, band-pass, or high-pass filter setting via Bits[2:1] in the 0x11E SPI register.

## 20\% BW NSR MODE ( $\mathbf{1 6}$ MHZ BW AT 80 MSPS)

NSR mode offers excellent noise performance over $20 \%$ of the ADC sample rate ( $40 \%$ of Nyquist). The fundamental can be tuned using a low-pass, band-pass, or high-pass filter by setting the NSR Mode Bits[2:1] in the 0x11E SPI register.

Figure 45 to Figure 47 shows the typical spectrum that can be expected from the AD6659 with the $20 \%$ BW NSR mode enabled for the three different filter settings.


Figure 45. Low Pass NSR Mode: 7.5 MHz AIN @ 80 MSPS (16 MHz BW)


Figure 46. Band-Pass NSR Mode: 19.7 MHz AIN @ 80 MSPS (16 MHz BW)


Figure 47. High Pass NSR Mode: 32 MHz AIN @ 80 MSPS (16 MHz BW)

## DC AND QUADRATURE ERROR CORRECTION (QEC)

In direct conversion or other quadrature systems, mismatches between the real (I) and imaginary (Q) signal paths cause frequencies in the positive spectrum to image into the negative spectrum and vice versa. From an RF point of view, this is equivalent to information above the LO frequency interfering with information below the LO frequency, and vice versa. These mismatches may occur from gain and/or phase mismatches in the analog quadrature demodulator or in any other mismatches between the I and Q signal chains. In a single-carrier zero-IF system where the carrier has been placed symmetrically around dc, this causes self-distortion of the carrier as the two sidebands fold onto one another and degrade the EVM of the signal.
In a multicarrier communication system, this mismatch can be even more problematic because carriers of widely different power levels can interfere with one another. For example, a large carrier centered at +fl can have an image appear at -f 1 that is much larger than the desired carrier at -f1.
The integrated quadrature error correction (QEC) algorithm of the AD6659 attempts to measure and correct the amplitude and phase imbalances of the I and Q signal paths to achieve higher levels of image suppression than is achievable by analog means alone. These errors can be corrected in an adapted manner, where the I and Q gain and quadrature phase mismatches are constantly estimated and corrected, allowing slow changes in mismatches due to supply and temperature to be constantly tracked.

The quadrature errors are corrected in a frequency independent manner on the AD6659; therefore, systems with significant mismatch in the baseband $I$ and $Q$ signal chains may have reduced image suppression. The AD6659 QEC still corrects the systematic imbalances.
The convergence time of the QEC algorithm is dependent on the statistics of the input signal. For large signals and large imbalance errors, this convergence time is typically less than 2 M samples of the AD6659 data rate.

## LO Leakage (DC) Correction

In a direct conversion receiver subsystem, LO to RF leakage of the quadrature modulator shows up as dc offsets at baseband. These offsets are added to dc offsets in the baseband signal paths and both contribute to a carrier at dc. In a zero-IF receiver, this dc energy can cause problems because it appears in the band of a desired channel. As part of the AD6659 QEC function, the dc offset is suppressed by applying a low frequency notch filter to form a null around dc. In applications where constant tracking of the dc offsets and quadrature errors is not needed, the algorithms can be independently frozen to save power. When frozen, the image and LO leakage (dc) correction are still performed, but changes are no longer tracked. Bits[5:3] in Register 0x110 disable the respective correction when frozen.
The default configuration of the AD6659 has the QEC and dc correction blocks disabled, and Bits[2:0] in Register 0x110 must be pulled high to enable the correction blocks. The quadrature gain, quadrature phase, and dc correction algorithms can also be disabled independently for system debugging or to save power by pulling Bits[2:0] low in Register 0x110.
When the QEC is enabled and a correction value has been calculated, the value remains active as long as any of the QEC functions (dc, gain, or phase correction) are used.

## QEC and DC Correction Range

Table 13 gives the minimum and maximum correction ranges of the QEC algorithms on the AD6659; if the mismatches are greater than these ranges, an imperfect correction results.

Table 13. QEC and DC Correction Range

| Parameter | Minimum | Maximum |
| :--- | :--- | :--- |
| Gain | -1.1 dB | +1.0 dB |
| Phase | $-1.79^{\circ}$ | $+1.79^{\circ}$ |
| DC | $-6 \%$ | $+6 \%$ |

## AD6659



Figure 48. QEC Mode Off


Figure 49. QEC Mode On

## SERIAL PORT INTERFACE (SPI)

The AD6659 SPI allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. The SPI gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from the port. Memory is organized into bytes that can be further divided into fields, which are documented in the Memory Map section. For detailed operational information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

## CONFIGURATION USING THE SPI

Three pins define the SPI of this ADC: SCLK, SDIO, and CSB (see Table 14). SCLK (a serial clock) is used to synchronize the read and write data presented from and to the ADC. SDIO (serial data input/output) is a dual-purpose pin that allows data to be sent to and read from the internal ADC memory map registers. CSB (chip select bar) is an active low control that enables or disables the read and write cycles.

Table 14. Serial Port Interface Pins

| Pin | Description |
| :--- | :--- |
| SCLK | Serial Clock. The serial shift clock input, which is used <br> to synchronize serial interface reads and writes. |
| SDIO | Serial Data Input/Output. A dual-purpose pin that typically <br> serves as an input or an output, depending on the <br> instruction being sent and the relative position in the <br> timing frame. |
| CSB | Chip Select Bar. An active low control that gates the <br> read and write cycles. |

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Figure 50 and Table 5.

Other modes involving CSB are available. CSB can be held low indefinitely, which permanently enables the device; this is called streaming. CSB can stall high between bytes to allow for additional external timing. When CSB is tied high, SPI functions are placed in high impedance mode. This mode turns on any SPI pin secondary functions.

During an instruction phase, a 16-bit instruction is transmitted. Data follows the instruction phase, and its length is determined by the W1 and W0 bits, as shown in Figure 50.

All data is composed of 8-bit words. The first bit of the first byte in a multibyte serial data transfer frame indicates whether a read command or a write command is issued. This allows the serial data input/output (SDIO) pin to change direction from an input to an output at the appropriate point in the serial frame.

In addition to word length, the instruction phase determines whether the serial frame is a read or write operation, allowing the serial port to be used both to program the chip and to read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the serial data input/ output (SDIO) pin to change direction from an input to an output at the appropriate point in the serial frame.

Data can be sent in MSB-first mode or LSB-first mode. MSBfirst mode is the default on power-up and can be changed via the SPI port configuration register. For more information about this and other features, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.


Figure 50. Serial Port Interface Timing Diagram

## AD6659

## HARDWARE INTERFACE

The pins described in Table 14 constitute the physical interface between the programming device of the user and the serial port of the AD6659. When using the SPI interface, SCLK and CSB function as inputs. SDIO is bidirectional, functioning as an input during write phases and as an output during readback.
The SPI interface is flexible enough to be controlled by either FPGAs or microcontrollers. One method for SPI configuration is described in detail in the AN-812 Application Note, Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.
The SPI port should not be active during periods when the full dynamic performance of the converter is required. Because the SCLK signal, the CSB signal, and the SDIO signal are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD6659 to prevent these signals from transitioning at the converter inputs during critical sampling periods.
SDIO/DCS and SCLK/DFS serve a dual function when the SPI interface is not being used. When the pins are strapped to DRVDD or ground during device power-on, they are associated with a specific function. The Digital Outputs section describes the strappable functions supported on the AD6659.

## CONFIGURATION WITHOUT THE SPI

In applications that do not interface to the SPI control registers, SDIO/DCS, SCLK/DFS, OEB, and PDWN serve as standalone CMOS-compatible control pins. When the device is powered up, it is assumed that the user intends to use the pins as static control lines for the duty cycle stabilizer, output data format, output enable, and power-down feature control. In this mode, connect the CSB pin to DRVDD, which disables the serial port interface.

Table 15. Mode Selection

| Pin | External Voltage | Configuration |
| :--- | :--- | :--- |
| SDIO/DCS | DRVDD | Duty cycle stabilizer enabled |
|  | AGND (default) | Duty cycle stabilizer disabled |
| SCLK/DFS | DRVDD | Twos complement enabled |
|  | AGND (default) | Offset binary enabled |
| OEB | DRVDD | Outputs in high impedance |
|  | AGND (default) | Outputs enabled <br> Chip in power-down or standby |
| PDWN | DRVDD | AGND (default) | | Normal operation |
| :--- |

## SPI ACCESSIBLE FEATURES

Table 16 provides a brief description of the general features that are accessible via the SPI. These features are described in detail in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI. The AD6659 part-specific features are described in detail in Table 17.

Table 16. Features Accessible Using the SPI

| Feature | Description |
| :--- | :--- |
| Mode | Allows the user to set either power-down mode <br> or standby mode <br> Allows the user to access the DCS via the SPI <br> Offset |
| Allows the user to digitally adjust the converter <br> offset <br> Allows the user to set test modes to place <br> known data on output bits |  |
| Output Mode | Allows the user to set up outputs |
| Output Phase | Allows the user to set the output clock polarity <br> Output Delay |
| Allows the user to vary the DCO delay |  |

## MEMORY MAP

## READING THE MEMORY MAP REGISTER TABLE

Each row in the memory map register table (see Table 17) has eight bit locations. The memory map is roughly divided into four sections: the chip configuration registers (Address 0x00 to Address 0x02); the device index and transfer registers (Address 0x05 and Address 0 xFF ); the program registers, including setup, control, and test (Address 0x08 to Address 0x2E); and the digital feature control registers (Address $0 \times 100$ to Address $0 \times 11 \mathrm{E}$ ).

Table 17 documents the default hexadecimal value for each hexadecimal address shown. The column with the heading Bit 7 (MSB) is the start of the default hexadecimal value given. For example, Address 0x05, the channel index register, has a hexadecimal default value of $0 x 03$. This means that in Address $0 \times 05$ $\operatorname{Bits}[7: 2]=0$, and the remaining Bits[1:0] $=1$. This setting is the default channel index setting. The default value results in both ADC channels receiving the next write command. For more information on this function and others, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI. This application note details the functions controlled by Register 0x00 to Register 0xFF. The remaining AD6659 specific registers, Register 0x100 through Register 0x11E, are documented in the Memory Map Register Descriptions section following Table 17.

## OPEN LOCATIONS

All address and bit locations excluded in the SPI map are not currently supported for this device. Unused bits of a valid address location should be written with 0 s. Writing to these locations is required only when part of an address location is open (for example, Address $0 x 05$ ). If the entire address location is open, it is omitted from the SPI map (for example, Address 0x13) and should not be written.

## DEFAULT VALUES

After the AD6659 is reset, critical registers are loaded with default values. The default values for the registers are given in the memory map register table (see Table 17).

## Logic Levels

An explanation of logic level terminology follows:

- "Bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit."
- "Bit is cleared" is synonymous with "bit is set to Logic 0 " or "writing Logic 0 for the bit."


## Transfer Register Map

Address $0 \times 08$ to Address $0 \times 18$ are shadowed. Writes to these addresses do not affect part operation until a transfer command is issued by writing $0 \times 01$ to Address 0 xFF , setting the transfer bit. This allows these registers to be updated internally and simultaneously when the transfer bit is set. The internal update takes place when the transfer bit is set, and then the bit autoclears.

## Channel-Specific Registers

Some channel setup functions can be programmed differently for each channel. In these cases, channel address locations are internally duplicated for each channel. These registers and bits are designated in the memory map register table as local. These local registers and bits can be accessed by setting the appropriate Channel A (Bit 0) or Channel B (Bit 1) bit in Register 0x05.

If both bits are set, the subsequent write affects the registers of both channels. In a read cycle, set only Channel A or Channel B to read one of the two registers. If both bits are set during an SPI read cycle, the part returns the value for Channel A. Registers and bits designated as global in the memory map register table (see Table 17) affect the entire part or the channel features for which independent settings are not allowed between channels. The settings in Register 0x05 do not affect the global registers and bits.

## AD6659

## MEMORY MAP REGISTER TABLE

All address and bit locations excluded from Table 17 are not currently supported for this device.
Table 17.

| Addr <br> (Hex) | Register Name | Bit 7 <br> (MSB) | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | $\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$ | Default Value (Hex) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Configuration Registers |  |  |  |  |  |  |  |  |  |  |  |
| 0x00 | SPI port configuration (global) | 0 | LSB first | Soft reset | 1 | 1 | Soft reset | LSB first | 0 | 0x18 | The nibbles are mirrored so that LSB- or MSB-first mode registers correctly, regardless of shift mode |
| $0 \times 01$ | Chip ID (global) | 8-bit Chip ID Bits[7:0] AD6659 $=0 \times 76$ |  |  |  |  |  |  |  |  | Unique chip ID used to differentiate devices; read only |
| $0 \times 02$ | Chip grade (global) | Open | $\begin{gathered} \text { Speed Grade ID[6:4] } \\ 80 \mathrm{MSPS}=011 \end{gathered}$ |  |  | Open |  |  |  |  | Unique speed grade ID used to differentiate devices; read only |
| Device Index and Transfer Registers |  |  |  |  |  |  |  |  |  |  |  |
| $0 \times 05$ | Channel index | Open | Open | Open | Open | Open | Open | ADC B default | ADC A default | 0x03 | Bits are set to determine which device on chip receives the next write command; the default is all devices on chip |
| 0xFF | Transfer | Open | Transfer | 0x00 | Synchronously transfers data from the master shift register to the slave |

Program Registers (May or May Not Be Indexed by Device Index)

| $0 \times 08$ | Modes | External powerdown enable (local) | External pin function $0 x 00$ full power-down $0 \times 01$ standby (local) |  | Open | Open | $\begin{array}{r} 00 \\ 01=\mathrm{fu} \\ 10 \\ 11=\mathrm{cr} \\ \mathrm{re} \end{array}$ | ip run <br> wer-down <br> andby <br> wide digital <br> (local) | 0x80 | Determines various generic modes of chip operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x09 | Clock (global) | Open | Open | Open | Open |  | Open | Duty cycle stabilize | 0x00 | Enables or disables theDCS |
| 0x0B | Clock divide (global) | Open |  |  |  |  | Clock Divi <br> Clock divi <br> $000=$ div <br> $001=$ div <br> $010=$ divi <br> 011 = div <br> $100=$ div <br> $101=$ div | $\begin{aligned} & 2: 0] \\ & \text { atio } \\ & \text { y } 1 \\ & \text { y } 2 \\ & \text { y } 3 \\ & y 4 \\ & y \\ & 5 \\ & y \\ & \hline \end{aligned}$ | 0x00 | The divide ratio is the value plus 1 |


| Addr <br> (Hex) | Register Name | Bit 7 <br> (MSB) | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | $\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$ | Default Value (Hex) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x0D | Test mode (local) | User test <br> (loc $\begin{gathered} 00=\text { si } \\ 01=\text { alt } \\ 10=\text { sing } \\ 11=\text { alt } \end{gathered}$ onc | mode gle nate once nate | Reset PN long gen | Reset <br> PN <br> short <br> gen |  | tput test $\begin{array}{r} 0000= \\ 0001=\mathrm{m} \\ 0010= \\ 0011= \\ =\text { alterna } \\ 0101=\mathrm{PN} \\ 0110=\mathrm{P} \\ 0111=1-1 \\ 1000= \\ 1001=1 \\ 1010 \\ 1011= \\ 100=\text { mix } \end{array}$ | mode [3: <br> ff (defa <br> idscale <br> positive <br> negative <br> ing che <br> 23 sequ <br> 9 sequ <br> -word <br> user inp <br> /0-bit to <br> $1 \times$ syn <br> ne bit h <br> $d$ bit fre | cal) <br> board <br> e <br> cy | 0x00 | When set, the test data is placed on the output pins in place of normal data |
| 0x0E | BIST enable | Open | Open | Open | Open | Open | BIST <br> INIT | Open | BIST enable | 0x00 | When Bit 0 is set, the BIST function is initiated |
| 0x10 | Offset adjust (local) | 8-bit Device Offset Adjustment[7:0] (local) <br> Offset adjust in LSBs from +127 to -128 (twos complement format) |  |  |  |  |  |  |  | 0x00 | Device offset trim |
| 0x14 | Output mode | $\begin{aligned} & 00=3.3 \mathrm{~V} \text { CMOS } \\ & 10=1.8 \mathrm{~V} \text { CMOS } \end{aligned}$ |  | Output mux enable (interleaved) | Output disable (local) | Open | Output invert (local) | $\begin{gathered} 00=\text { offset binary } \\ 01=\text { twos } \\ \text { complement } \\ 10=\text { gray code } \\ 11=\text { offset binary } \\ \text { (local) } \end{gathered}$ |  | 0x00 | Configures the outputs and the format of the data |
| 0x15 | Output adjust | 3.3 V DCO drive strength $00=1$ stripe (default)$\begin{aligned} & 01=2 \text { stripes } \\ & 10=3 \text { stripes } \\ & 11=4 \text { stripes } \end{aligned}$ |  | 1.8 V DCO drive strength $00=1$ stripe $01=2$ stripes $=3$ stripes (default) 11 = 4 stripes |  | 3.3 V data drive strength $00=1$ stripe (default)$01 \text { = } 2 \text { stripes }$$10=3 \text { stripes }$ |  | $\begin{aligned} & 1.8 \mathrm{~V} \text { data drive } \\ & \text { strength } \\ & 00=1 \text { stripe } \\ & 01=2 \text { stripes } \\ & 10=3 \text { stripes } \\ & \text { (default) } \\ & 11=4 \text { stripes } \end{aligned}$ |  | $0 \times 22$ | Determines CMOS output drive strength properties |
| 0x16 | Output phase | DCO output polarity $0=$ normal $1=$ inverted (local) | Open | Open | Open | Open | Input Clock Phase Adjust[2:0] <br> (Value is number of input <br> clock cycles of phase delay) <br> $000=$ no delay <br> $001=1$ input clock cycle <br> $010=2$ input clock cycles <br> $011=3$ input clock cycles <br> $100=4$ input clock cycles <br> $101=5$ input clock cycles <br> $110=6$ input clock cycles <br> 111 = 7 input clock cycles |  |  | 0x00 | On devices that use global clock divide, this register determines which phase of the divider output is used to supply the output clock; internal latching is unaffected |
| $0 \times 17$ | Output delay | Enable DCO delay | Open | Enable data delay | Open | Open | $\begin{gathered} \hline \text { DCO/Data Delay[2:0] } \\ 000=0.56 \mathrm{~ns} \\ 001=1.12 \mathrm{~ns} \\ 010=1.68 \mathrm{~ns} \\ 011=2.24 \mathrm{~ns} \\ 100=2.80 \mathrm{~ns} \\ 101=3.36 \mathrm{~ns} \\ 110=3.92 \mathrm{~ns} \\ 111=4.48 \mathrm{~ns} \end{gathered}$ |  |  | 0x00 | Sets the fine output delay of the output clock but does not change internal timing |
| 0x19 | USER_PATT1_LSB | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | 0x00 | User-defined Pattern 1, LSB |

## AD6659

| Addr <br> (Hex) | Register Name | Bit 7 <br> (MSB) | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | $\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$ | Default Value (Hex) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1A | USER_PATT1_MSB | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | 0x00 | User-defined <br> Pattern 1, MSB |
| 0x1B | USER_PATT2_LSB | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | 0x00 | User-defined Pattern 2, LSB |
| 0x1C | USER_PATT2_MSB | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | 0x00 | User-defined Pattern 2, MSB |
| 0x24 | BIST signature LSB | BIST signature [7:0] |  |  |  |  |  |  |  | 0x00 | Least significant byte of BIST signature, read only |
| 0x2A | Features | Open | OR OE (local) | $0 \times 01$ | Disable the ORx pin for the indexed channel |
| 0x2E | Output assign | Open | $0=A D C A$ $1=\mathrm{ADCB}$ <br> (local) | $\begin{aligned} & \text { Ch A= } \\ & 0 \times 00 \\ & \text { Ch B = } \\ & 0 \times 01 \end{aligned}$ | Assigns an ADC to an output channel |


| 0x100 | Sync control (global) | Open | Open | Open | Open | Open | Clock <br> divider <br> next <br> sync <br> only | Clock <br> divider <br> sync <br> enable | Master sync enable | $0 \times 01$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x101 | USR2 | Enable OEB <br> Pin 47 <br> (local) | Open | Open | Open | Enable GCLK detect | Run GCLK | Open | Disable SDIO pulldown | 0x88 | Enables internal oscillator for clock rates $<5 \mathrm{MHz}$ |
| 0x110 | QEC Control 0 | Open | Open | Freeze dc | Freeze phase | Freeze gain | DC enable | Phase enable | Gain enable | 0x00 |  |
| $0 \times 111$ | QEC Control 1 | Open | Open | Open | Open | Open | Force dc | Force phase | Force gain | 0x00 |  |
| $0 \times 112$ | QEC gain bandwidth control | Open |  |  | Kexp_gain, Bits[4:0] |  |  |  |  | 0x02 |  |
| $0 \times 113$ | QEC phase bandwidth control | Open |  |  | Kexp_phase, Bits[4:0] |  |  |  |  | 0x02 |  |
| 0x114 | QEC dc bandwidth control | Open |  |  | Kexp_DC, Bits[4:0] |  |  |  |  | 0x02 |  |
| 0x116 | QEC Initial Gain 0 | Initial gain, Bits[7:0] |  |  |  |  |  |  |  | 0x00 |  |
| $0 \times 117$ | QEC Initial Gain 1 | Open | Initial gain, Bits[14:8] |  |  |  |  |  |  | 0x00 |  |
| 0x118 | QEC Initial Phase 0 | Initial phase, Bits[7:0] |  |  |  |  |  |  |  | 0x00 |  |
| 0x119 | QEC Initial Phase 1 | Open |  |  | Initial phase, Bits[12:8] |  |  |  |  | 0x00 |  |
| 0x11A | QEC Initial DCI 0 | Initial DC I, Bits[7:0] |  |  |  |  |  |  |  | 0x00 |  |
| 0x11B | QEC Initial DCI 1 | Open |  | Initial DC I, Bits[13:8] |  |  |  |  |  | 0x00 |  |
| 0x11C | QEC Initial DC Q 0 | Initial DC Q, Bits[7:0] |  |  |  |  |  |  |  | 0x00 |  |
| 0x11D | QEC Initial DC Q 1 | Open |  | Initial DC Q, Bits[13:8] |  |  |  |  |  | 0x00 |  |
| 0x11E | NSR Control | Open |  |  |  |  | Noise sh <br> $00=$ <br> $01=$ <br> $1 \mathrm{x}=$ | ing mode: <br> w pass <br> pass <br> d-pass | Enable NSR | 0x00 |  |

## MEMORY MAP REGISTER DESCRIPTIONS

For additional information about functions controlled in Register 0x00 to Register 0xFF, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

## Sync Control (Register 0x100)

## Bits[7:3]-Open

## Bit 2—Clock Divider Next Sync Only

If the master sync enable bit (Address 0x100, Bit 0 ) and the clock divider sync enable bit (Address 0x100, Bit 1) are high, Bit 2 allows the clock divider to sync to the first sync pulse that it receives and to ignore the rest. The clock divider sync enable bit (Address 0x100, Bit 1) resets after it syncs.

## Bit 1—Clock Divider Sync Enable

Bit 1 gates the sync pulse to the clock divider. The sync signal is enabled when Bit 1 and Bit 0 are high and the device is operating in continuous sync mode as long as Bit 2 of the sync control register is low.

## Bit 0-Master Sync Enable

Bit 0 must be high to enable any of the sync functions.
USR2 (Register 0x101)

## Bit 7-Enable OEB Pin 47 (Local)

Normally set high, this bit allows Pin 47 to function as the output enable. If it is set low, it disables Pin 47.

## Bits[6:4]-Open

## Bit 3-Enable GCLK Detect

Normally set high, this bit enables a circuit that detects encode rates below approximately 5 MSPS. When a low encode rate is detected, an internal oscillator, GCLK, is enabled ensuring the proper operation of several circuits. If set low, the detector is disabled.

## Bit 2-Run GCLK

This bit enables the GCLK oscillator. For some applications with encode rates below 10 MSPS, it may be preferable to set this bit high to supersede the GCLK detector (Bit 3).

## Bit 1-Open

## Bit 0—Disable SDIO Pull-Down

This bit can be set high to disable the internal $30 \mathrm{k} \Omega$ pull-down on the SDIO pin, which can be used to limit the loading when many devices are connected to the SPI bus.

## QEC Control 0 (Register 0x110)

Bits[7:6]-Open
Bits[5:3]-Freeze DC/Freeze Phase/Freeze Gain
These bits can be used to freeze the corresponding dc, phase, and gain offset corrections of the quadrature error correction (QEC) independently. When asserted high, QEC is applied using frozen values, and the estimation of the quadrature errors is halted.

## Bits[2:0]—DC Enable/Phase Enable/Gain Enable

These bits allow the corresponding dc, phase, and gain offset corrections to be enabled independently.

## QEC Control 1 (Register 0x111)

Bits[7:3]-Open

## Bit 2-Force DC

When set high, this bit forces the initial static correction values from Register 0x11A and Register 0x11B for the I data and Register 0x11C and Register 0x11D for the Q data.

## Bit 1-Force Phase

When set high, this bit forces the initial static correction values from Register 0x118 and Register 0x119.

Bit 0-Force Gain
When set high, this bit forces the initial static correction values from Register 0x116 and Register 0x117.

## QEC Gain Bandwidth Control (Register 0x112) <br> Bits[7:5]-Open <br> Bits[4:0]—Kexp_Gain[4:0]

These bits adjust the time constants of the gain control feedback loop for quadrature error correction.

## QEC Phase Bandwidth Control (Register 0x113)

Bits[7:5]-Open
Bits[4:0]—Kexp_Phase[4:0]
These bits adjust the time constants of the phase control feedback loop for quadrature error correction.

## QEC DC Bandwidth Control (Register 0x114) <br> Bits[7:5]-Open <br> Bits[4:0]—Kexp_DC[4:0]

These bits adjust the time constants of the dc control feedback loop for quadrature error correction.

## AD6659

QEC Initial Gain 0 and QEC Initial Gain 1 (Register 0x116 and Register 0x117)
Bits[14:0]-Initial Gain[14:0]
When the force gain bit (Register 0x111, Bit 0 ) is set high, these values are used for gain error correction.

QEC Initial Phase 0 and QEC Initial Phase 1 (Register 0x1 18 and Register 0x119)
Bits[12:0]—Initial Phase[12:0]
When the force phase bit (Register 0x111, Bit 1) is set high, these values are used for phase error correction.

QEC Initial DC I (Register 0x11A and Register 0x11B)
Bits[13:0]-Initial DC I[13:0]
When the force dc bit (Register 0x111, Bit 2) is set high, these values are used for dc error correction.

QEC Initial DC Q (Register 0x11C and Register 0x11D)
Bits[13:0]-Initial DC Q[13:0]

When the force dc bit (Register 0x111, Bit 2) is set high, these values are used for dc error correction.

## NSR Control (Register 0x11E)

Bits[7:3]-Open
Bits[2:1]-Noise Shaping Mode
These bits select the mode of the noise shaping requantizer as shown in Table 18.

## Bit 0—NSR On and Off Control

When set high, this bit enables the NSR function.
Table 18.

| Setting | Mode |
| :--- | :--- |
| 00 | Low pass mode |
| 01 | High pass mode |
| 1 x | Band-pass mode |

## APPLICATIONS INFORMATION

## DESIGN GUIDELINES

Before starting design and layout of the AD6659 as a system, it is recommended that the designer become familiar with these guidelines, which discuss the special circuit connections and layout requirements needed for certain pins.

## Power and Ground Recommendations

When connecting power to the AD6659, it is strongly recommended that two separate supplies be used. Use one 1.8 V supply for analog (AVDD); use a separate 1.8 V to 3.3 V supply for the digital output supply (DRVDD). If a common 1.8 V AVDD and DRVDD supply must be used, the AVDD and DRVDD domains must be isolated with a ferrite bead or filter choke and separate decoupling capacitors. Several different decoupling capacitors can be used to cover both high and low frequencies. Locate these capacitors close to the point of entry at the PCB level and close to the pins of the part, with minimal trace length.
A single PCB ground plane should be sufficient when using the AD6659. With proper decoupling and smart partitioning of the PCB analog, digital, and clock sections, optimum performance is easily achieved.

## Exposed Paddle Thermal Heat Sink Recommendations

The exposed paddle (Pin 0 ) is the only ground connection for the AD6659; therefore, it must be connected to analog ground (AGND) on the customer's PCB. To achieve the best electrical and thermal performance, mate an exposed (no solder mask) continuous copper plane on the PCB to the AD6659 exposed paddle, Pin 0.
The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. Fill or plug these vias with nonconductive epoxy.

To maximize the coverage and adhesion between the ADC and the PCB, a silkscreen should be overlaid to partition the continuous plane on the PCB into several uniform sections. This provides several tie points between the ADC and the PCB during the reflow process. Using one continuous plane with no partitions guarantees only one tie point between the ADC and the PCB. For detailed information about packaging and PCB layout of chip scale packages, see the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP), at www.analog.com.
VCM
The VCM pin should be decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor, as shown in Figure 29.

## RBIAS

The AD6659 requires that a $10 \mathrm{k} \Omega$ resistor be placed between the RBIAS pin and ground. This resistor sets the master current reference of the ADC core and should have at least a $1 \%$ tolerance.

## Reference Decoupling

Externally decouple the VREF pin to ground with a low ESR, $1.0 \mu \mathrm{~F}$ capacitor in parallel with a low ESR, $0.1 \mu \mathrm{~F}$ ceramic capacitor.

## SPI Port

The SPI port should not be active during periods when the full dynamic performance of the converter is required. Because the SCLK, CSB, and SDIO signals are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD6659 to keep these signals from transitioning at the converter inputs during critical sampling periods.

## AD6659

## OUTLINE DIMENSIONS



| ORDERING GUIDE | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| Model $^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] ${ }^{2}$ | CP-64-4 |
| AD6659BCPZ-80 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ $]^{2}$ | CP-64-4 |
| AD6659BCPZRL7-80 | Evaluation Board |  |  |
| AD6659-80EBZ |  |  |  |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ The exposed paddle ( $\operatorname{Pin} 0$ ) is the only ground connection on the chip and must be connected to the PCB AGND.
$\square$
NOTES

## AD6659

## NOTES


[^0]:    ${ }^{1}$ Measured with 1.0 V external reference.
    ${ }^{2}$ Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.
    ${ }^{3}$ Input capacitance refers to the effective capacitance between one differential input pin and AGND.
    ${ }^{4}$ Standby power is measured with a dc input and the CLK active.

[^1]:    ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
    ${ }^{2}$ Crosstalk is measured at 100 MHz with -1.0 dBFS on one channel and no input on the alternate channel.

[^2]:    ${ }^{1}$ Internal $30 \mathrm{k} \Omega$ pull-down.
    ${ }^{2}$ Internal $30 \mathrm{k} \Omega$ pull-up.

